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Abstract

The in vivo investigation of joint kinematics in normal and injured wrist requires the segmentation of carpal bones from 3D (CT)
images, and their registration over time. The non-uniformity of bone tissue, ranging from dense cortical bone to textured spongy bone, the
irregular shape of closely packed carpal bones, small inter-bone spaces compared to the resolution of CT images, along with the presence
of blood vessels, and the inherent blurring of CT imaging render the segmentation of carpal bones a challenging task. We review the
performance of statistical classification, deformable models (active contours), region growing, region competition, and morphological
operations for this application. We then propose a model which combines several of these approaches in a unified framework. Specifically,
our approach is to use a curve evolution implementation of region growing from initialized seeds, where growth is modulated by a
skeletally-mediated competition between neighboring regions. The inter-seed skeleton, which we interpret as the predicted boundary of
collision between two regions, is used to couple the growth of seeds and to mediate long-range competition between them. The
implementation requires subpixel representations of each growing region as well as the inter-region skeleton. This method combines the
advantages of active contour models, region growing, and both local and global region competition methods. We demonstrate the
effectiveness of this approach for our application where many of the difficulties presented above are overcome as illustrated by synthetic
and real examples. Since this segmentation method does not rely on domain-specific knowledge, it should be applicable to a range of
other medical imaging segmentation tasks.
   2002 Published by Elsevier Science B.V.

Keywords: Segmentation; Carpal bones; Skeletally coupled deformable model

1 . Introduction normal. Characterizing the true 3D kinematics of the carpal
bones following these ligament injuries would provide

Degenerative joint disease is commonly attributed to better insight for the development of diagnostic techniques,
alterations in joint loading and joint kinematics due to surgical treatment, rehabilitation, the design of prosthetic
traumatic injury. In the wrist, despite widespread clinical devices and more appropriate treatment strategies (Lee and
awareness of dynamic and static wrist instability, little is Massear, 1993; Mayfield, 1984; Ruby et al., 1987; Savel-
known about the pathoanatomy and kinematics of these berg, 1991; Savelberg et al., 1991, 1993).
conditions. Patients may continue to be incapacitated by Invasive methods for measuring 3D joint motion are
pain following stressful activities months after injury, even common in orthopedic research. While instrumentation
though radiographs and other static imaging studies appear ranges from video to stereoradiogrammetry, all of the

existing methods use specific landmarks (e.g. infrared
reflectors or implanted tantalum balls) on each rigid body
segment. Such methods have been used in vivo (Karrholm*Corresponding author.
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study the knee and hip, but the small size of the carpal While it is possible for medical experts to segment these
bones of the wrist and the invasive nature of these methods images by using thresholding or manual seeding, e.g., by

1limits the in vivo application. Our general approach to using the ANALYZE package or similar tools, this
measuring 3D carpal motion in vivo requires registration process is highly labor intensive, considering the time
of bone surfaces extracted from multiple CT volumes required for accurate manual correction. Thus, the develop-
(Crisco et al., 1999). The extraction of these surfaces, in ment and use of segmentation techniques that minimize
turn, requires robust and reliablesegmentation methods. A user interaction is highly desirable. We have implemented
key goal of this paper is to develop a segmentation and evaluated several techniques for the segmentation of
technique suitable to this domain. carpal bones from a sequence of 2D CT images, including

Medical image segmentation, however, has proved to be global thresholding (Weeks et al., 1984; James et al.,
a challenging task. This is true, in particular, for the 1992), statistical methods (Duda and Hart, 1973), seeded
segmentation (and registration) of carpal bones in the wrist region growing (Adams and Bischof, 1994), deformable
from CT images. While the segmentation of bones in X-ray models like snakes (Kass et al., 1988), balloons (Cohen
and CT images is viewed to be a relatively straightforward and Cohen, 1993), bubbles (Tek and Kimia, 1997),
task, carpal bone segmentation is difficult because the morphological watersheds (Vincent and Soille, 1991), and
volumetric datasets contain irregularly shaped bones with region competition (Zhu and Yuille, 1996). The experience
small inter-bone distances relative to the resolution of CT with the use of these techniques in our domain has
imaging. A key fact is that bone tissue cannot be character- prompted us to combine three classes of these approaches
ized uniformly: the outer layer of the bone tissue, or in a single framework. Specifically, in one approach taken
cortical bone, is denser than thespongy bone it encases. by Tek and Kimia (1997), numerous seeds are initialized,
Thus, under CT imaging cortical bone appears brighter and both inside and outside objects of interest, which then
smooth, while spongy bone appears darker and textured. In grow by image-dependent forces. The growing seeds
addition, due to the close spacing of some carpal bones and merge in the absence of boundaries to form larger seeds,
inherent blurring in CT imaging, the inter-bone space often and finally slow down near boundaries, thus trapping the
appears brighter than the background (soft tissue), substan- boundary between the inner and outer regions. The success
tially reducing boundary contrast at these points. Finally, of this technique is dependent on the existence of
blood vessels resemble the background, creating gaps in boundaries with sufficient contrast and symmetric initiali-
the surface of bone images. In the image domain, these zation in the case of weak boundaries. This is due to the
characteristics translate into four challenging areas for monotonic nature of growth: once a region has evolved
segmentation techniques (Fig. 1): (i) gaps in the cortical beyond object boundaries it can no longer return to capture
shell; (ii) weak or diffused bone boundaries due to the it. Region competition (Zhu and Yuille, 1996), on the other
partial volume effect in CT imaging; (iii) textured areas hand, also relies on the growth of seeds, but implements a
corresponding to the spongy bone alternating between

1bone-like and tissue-like intensities; and (iv) the narrow ANALYZE is a medical imaging software package developed at the
inter-bone regions which tend to be diffused. Mayo Foundation, Rochester, MN.

Fig. 1. Three slices from a three-dimensional CT image of carpal bones (top row) demonstrate gaps or weak edges, diffused edges, textured areas, and
extremely narrow inter-bone regions that make automatic segmentation difficult. Each window is zoomed in the bottom row detailing the above features,
respectively.
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local competition between growing seeds, once they have2 . Segmentation of carpal bones: current approaches
become adjacent. This local back and forth competitive
movement of adjacent regions is based on a statistical We have investigated the use of several segmentation
decision depending on to which of these regions a point is techniques for their specific use in the recovery of carpal
more likely to belong. The central assumption underlying bone surfaces from CT images. These methods include
this scheme is that the growth of seeds leads to regions that global thresholding (Weeks et al., 1984; James et al.,
characterize distinct areas. This assumption fails when the 1992), statistical classification (Duda and Hart, 1973),
growing seeds in ‘waiting’ for other regions to arrive, seeded region growing (Adams and Bischof, 1994), region
acquire and encompass two statistically distinct domains. competition (Zhu and Yuille, 1996), deformable models
Seeded region growing (Adams and Bischof, 1994) avoids like snakes (Kass et al., 1988), balloons (Cohen and
this difficulty by implementing a global competition Cohen, 1993), their curve evolution counterparts (Malladi
among growing regions, but does not implement the local et al., 1994; Caselles et al., 1993, Tek and Kimia, 1995),
‘back and forth’ competition between them, thus also not and watershed segmentation (Vincent and Soille, 1991).
allowing for recovery from errors. This section briefly reviews our experience with the

The approach presented in this paper combines these application of these techniques to carpal bone segmenta-
three ideas, namely, deformable models implemented in tion.
the curve evolution framework, local back and forth
competition or region competition, and the global competi- 2 .1. Statistical methods
tion of seeded region growing, under one framework. The
main idea is to rely on the inter-region skeleton as a Global thresholding (Weeks et al., 1984; James et al.,
predictor of boundaries resulting from the growth of 1992) is the simplest statistical segmentation technique,
current seeds. Assuming current growth conditions con- where pixels are classified based on their intensity values.
tinue to hold, this predicted boundary couples two seeds However, choosing the right intensity threshold, which
and is used to affect their respective growth process by typically varies from one dataset to another, is difficult.
modulating their deformation speed: if a point on the pair Interactive manual selection of the threshold is tedious and
of paths leading to the formation of a skeletal point is more operator-sensitive. Even with the optimal threshold, final
likely to belong to one seed compared to another, then the segmentation based on thresholding creates holes and in
former region should grow faster at that point to capture it. some images two adjacent bones merge (Fig. 2). Mor-
Region competition then becomes a special case, i.e., when phological filters fill in the holes, but often merge distinct
the two regions become adjacent. The idea of global bones. The intensity threshold can be automatically found
competition in seeded region growing is implemented by by fitting a mixture of Gaussian distributions to the
the long-distance competition among neighboring seeds, intensity values, and estimating the distribution parameters
mediated by the inter-region skeleton, with the advantage using the expectation maximization (EM) algorithm (De-
that it eliminates the irrelevant interaction between the mpster et al., 1977; Redner and Walker, 1984). Once the
very distant seeds with other seeds in between. parameters are estimated, classical Bayesian Decision

This paper is organized as follows. Section 2 reviews theory (Duda and Hart, 1973) is used to find the decision
our experience with some current segmentation techniques boundaries, which in the 1D case, is the intensity threshold
for carpal bone segmentation. In Section 3, we describe the we want. However, the estimation of intensity threshold
skeletally coupled deformable model (SCDM). The im- for carpal bone segmentation using EM is not reliable as
plementation details are discussed in Section 4. The there is an overlap between the intensities of the bone and
segmentation results and validation studies are reported in soft tissue (Fig. 3). Other statistical methods include
Section 5. maximum likelihood methods or non-parametric methods

Fig. 2. An example of a 2D slice where global thresholding is used. (a) Original image. (b) Segmentation using the optimal threshold. (c) Result of
applying morphological filtering (Serra, 1982) on the segmented image. Observe that there are holes in the bones as well as a gap in the bone contour.
While morphological filtering can close the holes and gaps, the inter-bone region will also be closed and the shape of the boundary will be slightly altered.



24 T.B. Sebastian et al. / Medical Image Analysis 7 (2003) 21–45

Fig. 3. Left: A histogram of intensities of soft tissue and bones, obtained from a set of 2D slices. Note the significant overlap of the distribution of these
two classes. Right: The result of fitting a mixture of Gaussian distributions to the intensity values using the EM algorithm (Dempster et al., 1977; Redner
and Walker, 1984).

like k nearest neighbors (kNN) (Duda and Hart, 1973, surfacef(x, y)50, and the zero level set off is evolved
Cooper et al., 1980). according to

≠f
]5 S(x, y)(b 2b k(x, y))u=f u, (2)2 .2. Deformable models 0 1≠t

whereS(x, y) is the image based speed function defined forDeformable models are geometric descriptions of con-
the zero level set and extended to all other level sets,tours or surfaces which evolve under a suitable energy.

ˆdefined asS(x, y)51/(11 u=G * I(x, y)u), b and b ares 0 1These were pioneered by Kass et al. (1988), who intro-
constants, andk is the curvature. While these modelsduced snakes, energy minimizing splines influenced by
handle topological events well, they do not address theimage forces and external constraint forces. Formally, let
initialization and convergence issues. Tek and Kimia#(s)5 (x(s), y(s)) represent the snake, wheres is the arc
(1995) use a random initialization of many seeds, which inlength parameter. The energy functional of a snake is
the early stages of growth resemblebubbles, to address thedefined as
initialization issue and to include regional characterization

1
of each bubble in the evolution process (Fig. 4). Bubbles

E(# )5E [E (#(s))1E (#(s))1E (#(s))] ds, (1) are very effective in segmenting images with small struc-int image con

0 tures, e.g., vascular structures, which render manual
initialization impractical. However, practical use of bub-whereE represents the internal energy of the spline thatint
bles requires that (i) parameters be tuned for simultaneousimposes regularity on the curve,E represents imageimage
convergence of bubbles, and (ii) an appropriate domain-forces that are responsible for pushing the snake towards
dependent stopping time be selected by the user. Anothersalient image features, andE are the external constraintcon
approach to handle topological events has been proposedforces. The energy landscape of the snakeE is typically
by McInerney and Terzopoulos (1995) where multiplenot convex and can have several local minima. Hence,
seeds are explicitly modeled as topologically adaptablesnakes must be initialized close to the boundaries for
snakes. Caselles et al. (1997) and Kichenassamy et al.proper convergence. To overcome the initialization restric-
(1995) proposedgeodesic active contours to tackle thetions of the snakes, Cohen and Cohen (1993) proposed the
convergence issue. This is a curve evolution counterpart toballoon model. Balloons grow under a similar energy to
snakes, and inherits the initialization difficulties, thus stillthe snake, but with an additional constant inflation force to
requiring significant user interaction for segmentation. Intransport the initialized model closer to the edges.
summary, for carpal bone segmentation, the deformableSnakes (Kass et al., 1988) and balloons (Cohen and
models encounter similar problems: (i) not all modelsCohen, 1993) cannot easily handle topological changes.
converge at weak/diffused boundaries; (ii) the contourCaselles et al. (1993) and Malladi et al. (1994) resolve this
smoothing terms do not allow entry into the narrow inter-issue by using the curve evolution approach which models
bone region; (iii) as these models rely only on the localthe snake as level sets of surfaces evolving under similar
information along the boundary, the texture inside the boneenergies, with the additional dimension allowing for the
slows snakes down, resulting in poor convergence on thenotion of interior /exterior of the snake. Specifically, a
bone boundary; (iv) initialization requirements implycurve C(s) is considered to be the zero level set of the
significant and often impractical user interaction.
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Fig. 4. This figure illustrates a shortcoming of the bubbles (Tek and Kimia, 1995) approach. Top row: Left: Original image. Right: Initialized seeds.
Bottom row: Left: Initialized seeds have grown to near bone boundaries; note the convergence of bubbles in the small bone on the top left. Right: In the
course of further iterations, which are necessary for convergence in other places, some bubbles leak out, e.g., the bubble inside the small bone evolves to
include the inter-bone region.

2 .3. Region growing /seeded region growing whereN(x) is the set of ‘immediate’ neighbors of the pixel
2x, d(x) is a measure of how differentx is from the

Another class of techniques for segmentation isregion adjacent regionR it may join. If x adjoins two or morei

growing and merging, where initialized seeds grow by regions, the region that minimizesd(x) is chosen. In each
annexing ‘similar’ pixels, where similarity is defined by a iteration, the pixelz 5 argmin [d(x)] is appended tox[T

statistical test. The goal of region growing and merging is R (z). This process is repeated until all the pixels have beeni

to divide the domainR of the imageI into regionshR : allocated to one of the regions. The global competitioni
Ni 5 1 . . .Nj, such thatR5 < R , R >R 5f, if i ± j, ensures that the growth of regions near weak or diffusedi51 i i j

and I satisfies a homogeneity criterion on eachR edges is delayed till other regions have had a chance toi

(Beveridge et al., 1989). Region growing is typically reach this area. This simple, fast technique remarkably
followed by region merging where small regions are improves the performance of traditional region growing
grouped into larger ones using a statistical test. A popular methods. However, seeded region growing does not in-
choice is theFisher’s test. LetR and R be two adjacent corporate any geometrical information and hence cani j

2 2regions, withn , n , m , m , s and s the sizes, sample ‘leak’ through narrow gaps or weak edges (like the onesi j i j i j

means and the sample variances ofR andR , respectively. seen in the cortical shell (Fig. 5(b)). It also tends to mergei j

Then the regionsR and R are merged if the squared bones that are very close to each other (Fig. 5(a)). Anotheri j
2 2 2Fisher distance, (n 1 n )(m 2m ) /(n s 1 n s ) is significant issue is that seeded region growing does noti j i j i i j j

below a certain threshold. Region growing methods work allow for recovery from errors, i.e., once a seed ‘leaks out’
well in noisy images, but are sensitive to seed initializa- of the region (object) it is supposed to capture, it cannot be
tion, and in general result in jagged boundaries and poorly pushed back into the region.
localized edges.

Seeded region growing (Adams and Bischof, 1994) 2 .4. Region competition
improves traditional region growing by introducing a
‘competition’ between growing regions by ordering all Zhu and Yuille propose an interesting model ofregion
candidate ‘growth’ pixels according to some suitability competition (Zhu and Yuille, 1996) which combines the
criteria. Seeded region growing starts off with a set of geometrical features of deformable models and the statisti-
seeds, and in each step of the algorithm one pixel is added cal nature of region growing, by using a combination of
to one of the growing regions,R : i 5 1 . . .N. Let T be the statistical and smoothing forces for seed growth. It alsoi

set of all unallocated pixels which border at least one of introduces a local competition between regions when they
the regions, and is given by

2The definition ofd(x) used in (Adams and Bischof, 1994) isd(x)5N N
T 5 x [⁄ < R N(x)> < R ± 5 , (3) ug(x)2mean [g(y)]u, whereg(x) is the intensity at the image pointx.UH J y[Ri i i(x)i51 i51
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Fig. 5. An application of seeded region growing (Adams and Bischof, 1994) to our domain. Seeded region growing works fairly well in carpal bone
segmentation. However, in some cases seeded region growing leaks through gaps and weak edges on the surface of bones.

contact each other, by trading pixels that result in a anda are parameters of the probability distributionj

decrease of energy, thus allowing recovery from errors. describing the regionsR and R , respectively, andb is ai j 1

Specifically, letR , i 5 1 . . .N 1 1 denoteN seed regions constant. It should be noted that Eq. (4) is derived as thei

(objects) and one background regionR . Let ≠R be the gradient descent for minimizing description length in MDLB i

boundary of regionR , and let the intensity values in (Leclerc, 1989), and that the curvature term representsi

region R be consistent with having been generated by a Euclidean curve shortening flow (Grayson, 1987). Regioni

probability distributionP(Iua ), wherea are the parame- competition implements aback and forth competitioni i

ters of the distribution. The local deformation at a pointC between adjacent regions, which is continued to conver-
on the boundary of a regionR consists of a smoothing gence. After convergence, two adjacent regions are mergedi

¢ ¢force kN and a statistical force log(P(I ua ))N, wherek is if it leads to a decrease in energy; in this case theC i

the curvature at the boundary of the region,I is the image competition resumes and is continued until a final conver-C
¢at pointC andN is the normal to the boundary. As a result gence is reached resulting in the final segmentation.

of competition between two adjacent regionsR andR , the Region competition is a powerful technique that worksi j

local deformations of their boundary are based on a single well in a wide variety of images, including ones with
smoothing term for the boundary and a competition diffused or weak edges between noisy regions. However,
between the two statistical forces, leading to as the authors themselves indicate, this method needs

improvement in at least two areas: (i) the lack of effective-
≠C ¢ ¢ ness of smoothing terms leading to jagged boundaries, and]5 2b kN 1 [log(P(I ua ))2 log(P(I ua ))]N, (4)1 C i C j≠t (ii) the effective similarity of speeds for statistically
whereC is a point on the common boundary (Fig. 6),a different regions. Both drawbacks can be traced to discreti-i

Fig. 6. This figure adapted from (Zhu and Yuille, 1996) illustrates the competition of statistical region forces between adjacent regions used in region
competition.
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zation effects: curvature computation is not reliable due to intuitively described as follows: View the gradient image
the discrete representation of the boundary and boundaries as a height map, and gradually ‘immerse it in water’, with
can move either by an entire pixel or not at all. Also, the water leaking through the minimum gradient points and
motion is restricted to four (or possibly eight) directions. rising uniformly and globally across the image. Place a
Another drawback, which we have found experimentally ‘dam’ when two distinct bodies of water (catchment
for carpal bone segmentation, is that while the approach basins) meet and continue the process until water has
reduces the sensitivity to initial placement of seeds, it is reached all the points of the image. The dams provide the
not completely invariant to it (Fig. 7). If seeds are placed final segmentation. This can be interpreted in the image
‘asymmetrically’ with respect to boundaries, i.e., if a seed domain as the growth of seeds placed on the minima of the
is placed close to a boundary, and another seed is placed image gradient height map at a time proportional to their
far away, it is possible for the first seed to ‘leak through’ if height, that finally converges on the crest lines of the
the boundary is weak and represents similar regions. If the gradient map. This is a powerful approach especially
second seed were to arrive at roughly the same time, the where local gradients cannot be defined, e.g., diffused
‘region competition’ would have reversed the situation and edges. However, watershed segmentation cannot be used in
pushed back the extending region. However, due to our domain due to a well-known and un-resolvedover-
asymmetric initialization, the first seed has a chance to segmentation problem (Fig. 8). Much research is under-
grow for some time, and loses its statistical characteriza- way, e.g., using marker methods (Vincent and Soille,
tion, i.e., the parameters specifying the intensity distribu- 1991) to deal with this problem.
tion of the seed (mean and variance if a Gaussian model is As an example of an approach that uses domain-specific
used) change sufficiently, that it can embody a large knowledge, Tagare et al. (1993) have proposed a dynamic
number of pixels as well as the competing region can. In programming based deformable template for carpal bone
this case, recovery is not possible as region competition segmentation. The algorithm is based on the observation
cannot push back the extruding region (Fig. 7). Finally, that bone boundaries in CT images are locations of strong
observe that while the method implements a merge pro- intensity gradients. A circular or elliptical template is
cess, it does not allow for a region to ‘split’, another manually placed in the target area using the user’s knowl-
significant aspect needed for error recovery. edge of carpal bone anatomy. Dynamic programming is

used to maximize edge strength (computed using Sobel
2 .5. Watershed segmentation gradient and the zero crossings of the Marr–Hildreth edge

operator) and image intensity along the boundary of the
Watershed segmentation (Vincent and Soille, 1991) is a template while keeping it smooth and closed. This ‘opti-

morphological gradient-based technique, which can be mal’ boundary is manually adjusted by the user, if

Fig. 7. While region competition (Zhu and Yuille, 1996) frequently captures the correct bone boundaries, in some cases it does not, as illustrated here. In
the first case, region competition merges the bones and creates some holes in the captured regions. In the second case region competition fails to segment
the bone on the extreme left of the image. Here the seeds that were initialized lost their statistical character, resulting in an incorrect segmentation. The
main flaw is that seeds compete only after they have fully grown and become adjacent.
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Fig. 8. An example of a 2D slice where watersheds over-segment the image. Much research is underway to correct this problem, such as marker methods
(Vincent and Soille, 1991), and this issue currently remains un-resolved.

necessary. While this algorithm is less labor intensive than generality, we restrict our attention first to two regions
1 2manual outlining of bone, it still requires significant user (seeds),R andR , and the backgroundR . Let 6 denoteB
3interaction. theshocks of R as defined in (Kimia et al., 1990, 1995;B

Siddiqi and Kimia, 1996; Tek et al., 1997), to represent the
2 2inter-seed skeleton. Consider a pointA [ ≠R , the

2 23 . The skeletally coupled deformable model boundary ofR , its corresponding shock point6(A )5 A,
1 1and the paired shock pointA on the boundary ofR ,

1 1 1 2Our proposed approach, theskeletally coupled deform- A [ ≠R such that6(A )56(A )5 A. The main idea is
able model (SCDM), can be viewed as a combination of that the skeletal pointA is interpreted as the predicted

1 2three of the approaches presented above: curve evolution point of collision between the boundary pointsA andA ,
1 2deformable models such as bubbles (Tek and Kimia, and is used to couple boundary pointsA and A ,

1997), seeded region growing (Adams and Bischof, 1994), assuming current growth conditions hold. The proposed
2 2and region competition (Zhu and Yuille, 1996). Seeded competition is based on the prediction thatA of R

2region growing (Adams and Bischof, 1994) implements a captures points from the path fromA to A, and similarly
1 1‘global competition’ in that every region simultaneously A captures points on the path fromA to A, measuring

competes with every other. This competition is too global the appropriateness of this prediction, and feeding this
in the sense that it allows two distant regions, which may measure back into the deformation process. As a first
have many other regions in between and are therefore approximation, we compare the relative statistical de-

2 1unrelated, to interact. On the other hand, region competi- sirability of each growth pathA A andA A by comparing
tion (Zhu and Yuille, 1996) implements a ‘local competi- the two end points of each path. The competition will then
tion’ between adjacent regions, but there is no competition be a predicted competition: if the region were to grow as
between these regionsbefore they have become adjacent. current conditions imply, how would they compete? The
Rather, each region competes with the background. How- process then feeds this competition to modulate growth.
ever, observe that delaying competition between regions
until they contact each other can cause the seeds to lose3 .2. Local and long-range forces
their ‘character’, i.e., their statistical properties, during
growth, resulting in an incorrect segmentation (Fig. 7). Specifically, first, consider the local statistical growth

2SCDM combines the global seeded region growing and force at a pointA used in typical region growing
1the local region competition and brings it under one curve algorithms (a similar situation holds forA ),

evolution framework by implementing along range,
3predicted competition, between regions,before they be- Shocks are the medial axis points (locus of centers of circles that lie

come spatially adjacent. This long range coupling is completely inside the shape, and are at least bitangent to the boundary)
augmented with a notion of dynamics. The distance to the boundarymediated by theinter-seed skeleton. The skeleton is
(radius of the circle) at each shock point can be interpreted as the time ofinterpreted as a predicted location of the final, converged
formation of the shock in a wave propagation scheme where waves are

boundaries of growing seeds, and feeds back the statisticalsent from the boundary. This dynamic interpretation of the shock
desirability of this prediction to the local deformation or trajectory allows us to associate a direction of flow, an instantaneous
growth process. velocity (derivative with respect to radius), and an acceleration to each

shock point. The combined geometric (curvature of axis) and dynamics
(acceleration along axis) represented in a hierarchical graph is the shock3 .1. Skeletons mediating long-range coupling
set representation. In summary, shocks are medial axis points augmented
with with the notions of speed, direction, type, label, grouping, and a

To see how long range coupling is mediated by the hierarchy of these groups. For details see (Kimia et al., 1990, 1995;
inter-seed skeleton, consider Fig. 9. Without loss of Siddiqi and Kimia, 1996; Tek et al., 1997).
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1 2 1 2Fig. 9. A sketch of how the skeleton allows for the coupling of forces between nearby seeds,R andR , e.g., coupling ofA andA throughA. Note that
1 2 2 1f andf are thelocal forces at the boundary pointsA andA , respectively, whilef andf are thepredicted forces at the skeleton/shock pointA due2 1A A

1 2 2to predicted grown seed regions corresponding toR and R . The net force atA is computed based on these four forces, Eq. (9).

2 2f 5 log(P(A ua )), (5) represents traditional region growing, but implemented in a2A

curve evolution framework.]] 2 22 2(I(x,y)2m ) / (2s )ŒwhereP is typically (1 / 2ps ) e , I(x, y) Second, global competition is based on a comparison of
2is the intensity atA , and m and s are the mean and the end points of the growth path, which in turn requires a

1 2standard deviation of the adjoining region, respectively. comparison of which regionR or R should eventually
Note that the range of the values off is (2`, 0), and is2 encloseA, namely, a numerical comparison of the statisti-A

2 2 1 1rescaled to ensure numerical stability of the evolution. If cal forces, f 5 log P(Aua ) and f 5 log P(Aua ). This
1 2the two regionsR and R are infinitesimally close, then global interaction can only be valid at a distance and thus

1 2the pointA andA directly compete for the possession of must be modulated by (12l). Thus, the long range
1 2A, as in region competition, by the net force,f 5 f 22 competition of the regionsR or R for A is defined asnet A

2 1f 5 log P(Aua )2 log P(Aua ). However, when the two1A 2 1f 5 (12l)( f 2 f ), (8)long rangeregions are distant, they do not interact in the region ]

competition approach (Zhu and Yuille, 1996). Our pro- wherel is defined in Eq. (7). The term (12l) is nearly 1
posal then is to use the skeleton for (i) a long distance when regions are sufficiently distant (with respect tos),
competition by coupling pairs of points; and (ii) at the but as regions draw closer to each other, the effect of
same time reduce the effect of local competition as the long-range coupling is reduced to zero.1 2distance betweenA and A is increased. Thus, we define The total statistical force is then defined as a combina-
the net force representing competition at a distance by tion of the local and long range competition as

2f 5 f 2l(d)f , (6)2 1local A A f (A )5 f 1 fstat local long range
]

2 1where l is a monotonically decreasing function of the 5 f 2l f 1 (12l)( f 2 f ). (9)2 1A A
2 1distance betweenA and its competitorA , along the path

In this way, thelocal competition (between local forcesf 1Agoing through the skeletal pointA, consisting of two
1 2

2 1 2 and f on the boundaries ofR and R ) controls the2AsegmentsA A and AA of length 2d(A , A) (Fig. 9(b)).
2movement ofA when the regions are close to each other.We use

When the two regions are adjacent,l5 1, and the net
1 2 1 2 2 force is F 5 f 2 f as in region competition. On the2 2 12d(A , A ) / 2s d A A A]]]l(d)5 e . (7)]]2 other hand, thelong range, predicted competition between2psœ d 2 2 1the statistical forcef of A belonging toR and f of A

1 2Thus, when the regions are adjacent,f represents belonging toR modulates the movement ofA when thelocal

region competition as in (Zhu and Yuille, 1996), but when regions are far away. If the skeletal point is more likely to
the regions are moved apart, the local competition is belong to one region compared to the other, based on
gradually reduced to zero, such thatf 5 f , which current region parameters, the former region should grow2local A
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faster than the latter to capture the skeletal point. We skeletal point. This is not a generic occurrence in the space
emphasize that the inter-seed skeleton evolves as the seeds of all curves, but we are making their occurrence generic,
evolve. As an example, in Fig. 9, the skeletal pointA is since we approximate each boundary segment within a

1more likely to be part of regionR and hence the long pixel with a circular arc. However, since we are concerned
2range force coupling effectively slowsA down, allowing with inter-region skeletons, this is a problem only when

1 1A to ‘catch up’, thus ‘symmetrizing’ the regionsR and the skeletal point happens to be equidistant from another
2R with respect to the edge. boundary as well (Fig. 10(b)). This is not a generic
In addition to the statistical force, we include a boundary occurrence. When such cases do occur during the course of

smoothing term as in region competition (Zhu and Yuille, the evolution, it is handled by an averaging step similar to
1996), which is curvature dependent, so that the final force the junction case. Specifically, the circular arc segment is
is sampled using ENO pointsA , i51, . . . ,n (see Section 4.1i

for details on ENO points) and the forces are computed as
F 5 (aF 1bF ), (10)stat smooth

n n

whereF 5k, the curvature of the boundary. O f O fsmooth A Ai i
i50 i502 2]] ]]f (A )5 f 2l 1 (12l) f 2 .2 1 2 1 2stat A n n3 .3. Handling many-to-one skeletal coupling

(12)
While generally the coupling between two boundaries is

Observe that since the extent of the circular arcs does notone-to-one, there are cases where this breaks down, and
exceed a pixel, forces are generally continuous over such awhere the evolution is no longer well-defined. The first

2 1 11 range, and averaging is meaningful.case is a generic case when three pointsA , A , A
Finally, the singularities of one boundary can couplecouple through a skeletal point (junction)A (Fig. 10(a)),

21 2 21 2 1 11 with many points on another boundary (Fig. 10(c)). Sincei.e. 6 6(A )56 A5 hA , A , A j. In this case
our evolution process uses curvature smoothing, sharpthree boundaries compete to capture this skeletal point.
singularities are smoothed out. However, in practicalThus, we use the average of two forces as the competing
implementation, due to discretization high curvature pointsforces for the third, i.e.,
act like singularities, and we have to deal with the
subsequent many-to-one coupling. When this occurs, wef 1 f1 11A A2 S]]]Df (A )5 f 2l2stat A use averaging of forces as before to define the evolution2
process.1 11f 1 f2 For a formal discussion of the special configurations ofS D]]]1 (12l) f 2 . (11)2 the skeleton under a family of deformation see (Giblin and

Note that four boundary points on different seeds do not Kimia, 1999). In numerous computer simulations we have
generically share a shock point (Giblin and Kimia, 1999). observed that the many-to-one mapping except at the

Second, when a segment of one of the boundaries is generic case of a junction occurs infrequently, and the
exactly circular that entire segment collapses to a single averaging step described in Eq. (12) is rarely used. In

Fig. 10. This sketch shows the three cases where many-to-one mappings can occur in coupling two boundaries (blue) using the inter-seed skeleton (red).
2 1 11 2 1 11 2(a) Three isolated pointsA , A , A from boundaries of three distinct regionsR , R , R can give rise to skeletal point (junction). In this case,A has

1to be coupled with two points from two distinct boundaries. (b) A portion of the boundary of regionR is circular, and this segment corresponds to a point
2 2on the skeleton leading to a many-to-one coupling. (c) In this case the boundary of regionR has a singularity at pointA and hence corresponds to many

points on the skeleton leading to one-to-many boundary coupling.
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Fig. 11. (a) This figure from (Siddiqi et al., 1997) illustrates the reconstruction of curves in the presence of nearby curves from the discrete grid, using
ENO interpolation. (b) In contrast, bilinear interpolation fails in the presence of nearby curves shown more accurately by the middle figure in (a).

addition, the many-to-one mapping in its rare occurrence is subpixel implementation of region competition requires
not stable over time, and can affect one or a few iterations. regions to be adjacent, thus constantly operating in a mode
Moreover, what happens in the duration of one or a few where more than one curve is present within a pixel (Fig.
iterations of the evolution does not typically affect the final 12). This requires the reliable identification of the subpixel
results. boundary and computation of the forces at subcell points.

For the subpixel boundary within a pixel, we use a
Piecewise Circular (PC) approximation (Siddiqi et al.,

4 . Implementation of SCDM 1997), which can be extracted accurately from the distance
transform surface used in the curve evolution approach.

We now discuss the details of implementing the frame- The forces are computed at subcell locations by a non-
work described in Section 3. Several components are uniform ENO interpolation technique (Osher and Shu,
necessary to complete the implementation: (i) initialize 1991; Siddiqi et al., 1997), Appendix B.
seeds, (ii) characterize statistical properties of the seeds, Second, SCDM is implemented in a curve evolution
(iii) compute inter-seed skeletons, (iv) couple boundary framework which the allows for subpixel movement of the
points through the inter-seed skeletons, (v) evolve seeds, seed boundary, as well as for the existence of multiple
and (vi) compute subpixel forces. boundaries within a pixel, while maintaining a pixel-based

We first note that the evolving boundary must be computation based on the discrete grid, as described
represented at subpixel resolution. As the authors note in below. In this framework the curve (explicit representation)
(Zhu and Yuille, 1996), the implementation of region is embedded as the zero level-set of an evolving surfacef

competition algorithm has discretization drawbacks and (implicit representation). This allows the boundaries of
would benefit greatly from a subpixel implementation. regions to move consistently in a subpixel fashion on a
Also, the approach proposed here in modulating growth is discrete grid. Formally, let the initialized seeds or their

Ncritically dependent on the reliable, accurate, subpixel growth at any point be represented byR5 < R wherei51 i

detection and representation of the skeleton. In particular, each regionR is bounded byC 5≠R . Each regioni i i

computation becomes intricate as two seeds approach each evolves by a statistical forceF , defined in Eq. (9), andstat

other and share a pixel’s area (Fig. 11) Observe that a smoothing forceF assmooth

Fig. 12. This figure illustrates two cases where more than one curve is present within a pixel. Using ENO interpolation, the subpixel curve samplesP, P9,
Q, andQ9 can be accurately identified. Observe that ENO interpolation implies thatP is only affected by the changes inA andQ is affected by changes in
B, even if in this geometric arrangementA is closer to bothP and Q.
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4 .1. A subpixel method to construct explicit curve≠C (x, y)i ¢]]]5 (aF 1bF )N. (13) representation from implicit surface representationstat smooth≠t

As noted above, a subpixel implementation of SCDMThis is achieved by evolving the embedding surfacef
requires the reliable identification of the subpixel boundaryusing the Osher–Sethian formulation (Osher and Sethian,
(zero level set) from the embedding surface. Forisolated1988)
and smooth curves, bilinear interpolation of the discrete
surface values leads to a reliable identification of the≠f(x, y)

]]]5 (aF 1bF )u=f u, (14)stat smooth boundary, i.e., the zero level set. However, whendis-≠t
continuous or multiple distinct curves exist within a pixel
(Fig. 12), standard interpolation smoothes out the dis-wheref(x, y)50 gives the curveC ; we use the distancei

continuities and merges nearby curves, leading to largetransform to generatef from C . Table 1 gives the top-i

computational errors in the recovery of each curve (Siddiqilevel sketch of the algorithm for the implementation of
et al., 1997), (Fig. 11). Specifically, consider two contoursSCDM. The different components of that algorithm are
that are within the square area defined by four pixels (Fig.described in the following subsections.

Table 1
Top-level algorithm for the implementing SCDM
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Fig. 13. (a) The subpixel deformation of a curve (C is the original curve andC is the deformed curve) can be accomplished via updating its embedding1 2
2surface at each grid pointP, by the subpixel movement of the closest point on the curveA . (b) The subpixel computation of the force at P requires a two

stage ENO interpolation; (i) along the line (L) normal to the curve (boundary of the seed) using pointshG j (solid dot) and (ii) the computing the force fori

eachG along either the horizontal or vertical directions. For example, the force atG is computed via an ENO interpolation along the vertical grid linei 3

using the grid pointshG j (solid squares).3i

12(a)). When these contours are represented as the zero small, and the method is suitable to recover the explicit
level set of a single implicit surface, where the surface is representation of curves from their implicit representation.
positive for the areas within each closed contour, then all
the four surrounding grid crossingsA, A9, B and B9 must 4 .2. Evolving the implicit surface representation by the
necessarily be positive. Standard interpolation cannot desired evolution of explicit curve representation
recover either curve, since the results of the bilinear
interpolation for four positive numbers cannot be zero We now address the issue of whether changes in the
anywhere in the area between them. Siddiqi et al. (1997) discrete implicit surface can lead to reliable, accurate and
proposed a method (GENO, geometric ENO) based on the predictable subpixel changes in the contour, and vice
Essentially Non-Oscillatory (ENO) Interpolation methods versa. The surface should be transformed in such a way
(Osher and Shu, 1991), which is summarized in Appendix that the modified surface is the distance transform of the
B. ENO interpolation is effectively a one-sided interpola- modified curve. Appendix A shows that the PC reconstruc-
tion, that can recover adjacent contours (within a pixel) tion from the distance transform satisfies this accuracy
accurately from distance transform surface via a three step requirement. Consider how the surface point atP needs to
process: (i) ENO interpolation along horizontal and verti- be updated when the curve changes fromC to C (Fig.1 2

2 2cal discrete grid lines to recover curve samples along grid 13(a)). LetA andB be the closest points fromP on the
lines. Since this interpolation is one-sided, both curve curvesC and C , respectively. Hence the surface atP1 2

2 2samples on grid linesP, P9, Q, and Q9 are recovered should be updated byuPB 2PA u, i.e., the difference in
provided a third curve is not present in the two pixel distance fromP to the two curves. For small movements

2 2vicinity; (ii) tracing these samples by tracking the interior, this can be approximated byB A . This requires identify-
2and (iii) a GENO interpolation of grid crossing samples of ing the closest pointA on the PC curve to the each pixel

2the curve to represent the curve inside the pixel using a P, and computing the force at subcell pointA (Fig. 13(a)).
piecewise circular (PC) model (Banchoff and Giblin, The identification of the closest point on the subpixel

21994; Siddiqi et al., 1997). boundaryA is straightforward from the CEDT method,
The accuracy of reconstruction of PC curves from their Fig. 13(b). We have examined the effectiveness of this

distance transform using this approach is examined in this update scheme in a few cases where a pre-defined force is
paper in Appendix A. First, it is shown that an arbitrary specified at each subpixel point. The results are accurate
isolated line can be recovered exactly using a second order and robust, as illustrated by accurate rotations of a straight

4ENO interpolation . Second, it is shown that for an line and a circle (Fig. 14(a) and (b)).
isolated circular curve, the second order ENO reconstruc-
tion errors are extremely small. Several simulations show 4 .3. Computing inter-seed shocks and coupling of
that the reconstruction errors for other shapes are veryboundary points using the shocks

2
4 The computation of the subpixel force atA relies onWe typically use second order ENO interpolation, but we are not

restricted from using higher order schemes when necessary. coupling the boundaries via the intermediate skeleton
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Fig. 14. This figure shows the results of deforming a curve by updating its embedding surface at each grid point by the force at the closest point on the
subpixel boundary. In this example, the subpixel force is specified by a rotation field: (a) the rotation of a line (grey line is the original and the blackline is
the rotated line); (b) the case of rotating an arc (blue is the original and green is the rotated). In each case the exact and the computed curves after rotation
are plotted, but the exact curve cannot be viewed as at this resolution they are visually identical. These results illustrate the accuracy of the approach.

(Section 3), and requires: (i) computing the inter-seed point on the wavefront how far the wave has traveled, what
skeleton, (ii) identifying the pointA on the skeleton, the direction of propagation is, and which point on the

2corresponding toA (Fig. 15), (iii) identifying the point original boundary gave rise to it. This allows for the
1A on another seed that has the same skeletal pointA, Fig. accurate and numerically efficient computation of the inter-

15, and (iv) accurately computing the image intensity and seed skeleton. In addition, the approach of computing the
image derivatives along the normal to the seed boundaries skeleton using the CEDT directly identifies the skeletal

2 1at A , A and A, so that forces may be computed. point corresponding to a boundary point and vice versa.
2 1The inter-seed skeletons (shocks) are computed via the This makes the coupling of the boundary pointsA andA

wave-propagation technique based on the contour based straightforward.
distance transform (CEDT) (Tek and Kimia, 1998; Tek et
al., 1997). The input to the CEDT is a boundary model, 4 .4. A two-stage nonlinear interpolation of image
which in our case is the evolving seed boundaries. The intensity
CEDT propagates distances and orientation from the
boundary models such that it is immediately clear at each We now discuss how the image intensity and image

Fig. 15. (a) An illustration to show how the surface is updated. Dotted lines represent the grid lines whose crossings are the pixel center. The solid lines are
2 2the boundaries of each deformable model. To update the surface atP, the closest point on the boundary (fromP), A , is found. A is coupled with the

1point, A on the boundary of the adjacent region via the inter-boundary skeleton (shock) pointA. (b) Actual coupling in a cropped portion of a simulation
in a real image. The boundaries of each region represented in implicit form as the zero crossing of a surface represented on the pixels only. Observe (i)the
coupling between two deformable contours through the skeleton and (ii) the connection between the pixels (solid dots) and the deformable contours.
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derivatives along the normal to the seed boundaries are and these seeds stop moving. Thus, SCDM through the use
computed. To avoid the pitfalls of bilinear interpolation, of skeletal coupling resolves the convergence problems of
we use a two stage ENO interpolation to compute the traditional deformable models (Fig. 4). Eventually, all the
image intensity distribution and image derivatives along a seeds capture their respective object boundaries, and the
line segment with arbitrary orientation. In a pre-processing evolution is stopped. In practice, the evolution is stopped
step, ENO interpolation is used to compute the intensity when the net forces at all boundary points fall below a
distribution along every horizontal and vertical gridline of certain threshold. We chose this threshold to be 0.1 pixel.
the image. LetL be the line segment along which we want We have observed from numerous computer simulations
to compute the intensity distribution and image derivatives. that the method is insensitive to the choice of their
In the first stage, the intersectionshG j of this line segment threshold. Fig. 16 illustrates the convergence properties ofi

L with the gridlines (Fig. 13(b)) are found. The image SCDM. Observe that in the intermediate iterations portions
intensity values at these pointshG j are computed via a of the bone outline has been captured by the evolvingi

second order ENO interpolation along the corresponding seeds. Those converged seeds do not move in the further
discrete grid line. For example, the image intensity atG in iterations that are necessary for other portions of the seeds3

Fig. 13(b) is computed via an ENO interpolation along the to capture their object boundaries.
vertical grid line using the pointsG , G , G , G . In the31 32 33 34

second stage, a second ENO interpolation along the line
segmentL using the values at theG is done to obtain the 5 . Results, evaluation and discussioni

intensity distribution along theL, which specifies the
intensity distribution and derivatives at any point alongL. In this section we present the results of applying the
We use this interpolation technique to compute the image SCDM method to synthetic images (Fig. 17), and to carpal

2intensity at the closest point on the subpixel boundaryA bone segmentation (Figs. 16, 18 and 19), especially to
along the normal to the boundary, which in turn determines illustrate the performance of SCDM in the problem areas
the statistical force atP (Eq. (5)). listed in Section 1, namely, gaps and weak edges, diffused

edges, bone texture, and narrow inter-bone spaces. In order
to segment an image using SCDM, one has to choose the4 .5. Updating the PDE for surface evolution
user-specified parameters, namely,s in the definition ofld

(Eq. (7)), and parametersa, b in the definition of the netThe surface update equation (Eq. (14)) can be rewritten
force (Eq. (10)). The values for these parameters wereas
chosen based on experimentation. We choses 51, so thatd≠f(x, y)
the local force competition dominates when the competing]]]5aF u=f u1bk u=f ustat≠t regions are within a few pixels. The parametersa, b are

2 2 1 / 2
5aF (f 1f ) chosen based on numerical constraints and on our ex-stat x y

2 2 perience with this type of PDE (Kimia et al., 1995) to have
f f 22f f f 1f fxx y xy x y yy x 2 2 1 / 2 values a 5 0.3 and b 5 0.1. All parameters were fixed]]]]]]]1b 2 (f 1f )S D2 2 3 / 2 x y(f 1f )x y after an initial fine-tuning stage. We have observed that the

2 2 1 / 2 performance of the algorithm is not sensitive to moderate5aF (f 1f )stat x y changes in these values.
2 2

f f 22f f f 1f f Fig. 17 compares the results of applying seeded regionxx y xy x y yy x
]]]]]]]]1b 2 . (15)S D2 2 growing, region competition and SCDM for segmenting(f 1f )x y

some synthetic images. Fig. 17(a) illustrates the application
The embedding surface derivativesf , f , f , f , f are to an image with a weak edge. SCDM captures the edgex y xx yy xy

computed using an upwind scheme using ENO interpola- well, as does region competition. However, seeded region
tion. As discussed in Section 4.2, the surface is updated bygrowing leaks through the gap as it does not incorporate
the force at the closest point on the evolving boundary, geometric information. Fig. 17(b) illustrates a case where
F . the seeds are initialized across the boundaries. Sincestat

SCDM and region competition allow for recovery from
errors, both of them capture the object. However, observe4 .6. Convergence of the algorithm
the jagged nature of the final segmentation, due to the
discrete nature of the growth in region competition. SeededFinally, we address the issue of convergence, a strong
region growing does not allow for regions to shrink, andpoint of this algorithm. Lack of convergence is one of the
thus fails to capture the object. Fig. 17(c) illustrates themain drawbacks of traditional level-set-based segmentation
results of applying SCDM when seeds are initializedmethods. Recall that when seeds get close to one another
asymmetrically. SCDM which implements long rangein SCDM, the evolution is governed by local force
competition captures the edge. Region competition delayscompetition (Eq. (6)). In addition, if the seeds are close to
competition until the seeds contact each other, and fails tothe object boundaries, the local forces cancel each other
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Fig. 16. Several iterations of SCDM on a cropped portion of a CT image of the carpal bones and key advantages of SCDM. First, observe that in the initial
iterations, the ‘soft-tissue seed’ is far away from the inter-bone gap. Hence, the competition for the inter-bone gap is between the two ‘bone seeds’.The
bone seeds are slowed down considerably, but the seed of the bone on the left leaks out into the soft tissue. However, it is eventually pushed back by the
‘soft-tissue seed’. Second, observe how SCDM correctly segments the cortical bone (bright intensity) at the lower right portion of bone on the right.The
cortical bone belongs to the tail of distribution for the bone, and hence the evolving ‘bone seed’ is slowed down, but eventually captures the corticalbone.
Finally, observe the convergence properties of the evolving contours. In the intermediate iterations (for example, leftmost image in bottom row), portions of
the contours have already captured the bone outline. In further iterations that are needed to capture the inter-bone gap and high intensity cortical bone, these
portions of the contours do not move.

Fig. 17. In all rows left to right: Original image; initialized seeds; segmentation results using seeded region growing, region competition and SCDM. Note
that in the examples of SCDM segmentation the converged boundaries for both regions are shown. The skeleton between these boundaries capture edge. (a)
Comparison of segmentation results for an image illustrating the effect of a weak edge. Observe that in segmentation using seeded region growing, a seed
leaks out through the gap, while region competition and SCDM captures the edge. (b) Compares the effect of seeds initialized on the boundaries. As there
is no recovery from errors, seeded region growing fails, while region competition and SCDM captures the edge. However, observe the jagged nature of the
final segmentation using region competition. (c) Compares the effect of asymmetrically initialized seeds, i.e., where one seed is one is closer to theedge
than the other. While seeded region growing captures the edge it is not localized properly. Region competition fails here, as the seed on the left leaksout
and loses its statistical characterbefore competition begins. SCDM uses a combination of long-range and local competition and captures the edge.
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Fig. 18. Examples of carpal bone segmentation using skeletally coupled deformable models. Original image (left column), initialized seeds (middle
column) and SCDM segmentation results (right column) are shown.

capture the edge. Seeded region growing captures the edge, middle or due to noise. If there is a third region in the
but fails to localize it well. Thus, the combined local and middle, whose seed is remote from inter-seed skeleton of
global competition in SCDM combines the local competi- the first two seeds, the two competing seeds are both
tion of region competition and global competition of slowed down, allowing the third seed initialized for the
region growing. third region to capture the region. This is illustrated in the

Fig. 16 illustrates some key features of SCDM. Note segmentation of the inter-bone spacing in Fig. 16. Second,
that the inter-seed skeleton (predicted boundary) may be if the predicted boundary happens to be positioned on a
inaccurate due to the presence of a ‘third’ region in the ‘noisy pixel’, the forces are generally reduced due to a

Fig. 19. Use of semi-automated seed initialization for carpal bones segmentation with skeletally coupled deformable models. Original image (left column),
initialized seeds (middle column) and SCDM segmentation results (right column) are shown. Seeds in these cases were initialized semi-automatically using
the EM algorithm, described in Section 5.
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mismatch, thus slowing down each seed, but each by a can appear in the background, these are identified with a
different extent (generically). This evolves the skeleton out common label so that they may merge.
of the noisy region. Once outside this region the evolution We conducted a preliminary clinical evaluation of the
will symmetrize the skeleton. Finally, SCDM works well carpal bone segmentation results of SCDM. This evalua-
in the presence of object boundaries whose neighboring tion shows that the carpal bone segmentation by SCDM is
intensities belong to the ‘tail’ of its statistical distribution. clinically meaningful. In addition a comparison was made
In this case, the seed for this object is slowed down in between the results using SCDM, seeded region growing,
approaching the boundary, but eventually does converge and region competition by two hand surgeons from Rhode
on the object outline. This is illustrated in the segmentation Island Hospital. Two datasets (101 2D slices) were used
of the cortical bone at the lower right portion of bone on for the validation study. All slices were segmented using
the right in Fig. 16. all three methods, and the hand surgeons chose the best

Fig. 18 shows the results of applying SCDM segmenta- segmentation out of the three (without knowing which
tion to a few representative CT images of the carpal bones. segmentation was used in each). The results are: SCDM
In these examples, seeds were initialized manually, one was chosen as the best segmentation in 82 slices, seeded
inside each bone and a few labeled as background in the region growing in 15 slices, and region competition in 4
soft tissue. Observe how SCDM captures the bone con- slices. Fig. 20(a) shows an example of slices where SCDM
tours fairly well in these examples: it works well in images was chosen to be the best segmentation: SCDM and seeded
having a gap in the bone contour, e.g., in the lower portion region growing capture all the narrow inter-bone spaces,
of the second bone from the left in Fig. 18(b). It captures whereas region competition merges adjacent bones, and
low contrast contours, e.g., the bone on the bottom right in seeded region growing allows the soft tissue seeds to leak
Fig. 18(a). Observe also the growth into some of the through narrow gaps (top of second bone from left, and
narrow inter-bone spaces, e.g., Fig. 18(d). In addition, it bottom of fifth bone from left); it also fails to capture the
does well in case of diffused edges, e.g., top of the first low contrast bone on the bottom right well. Fig. 20(b)
bone in Fig. 18(d). Also, note that the region-based shows an example of a slice where seeded region growing
statistical force allows growth in textured areas, as evi- was chosen to be the best segmentation. Seeded region
denced by all these examples. However, observe that growing captured all the bone contours, whereas SCDM
SCDM does not enter some of the thinnest inter-bone merged two adjacent bones, the fourth and fifth bones from
spaces whose intensities are diffused. The inherent blurring the left. Region competition also merged two bones. In
in CT imaging causes the narrow inter-bone regions to addition, it failed to localize the edge properly in the bone
have intensities similar to the bones, rather than soft tissue. at top right. Fig. 20(c) shows an example of a slice where
This partial volume effect does not allow the deformable region competition was chosen to be best segmentation.
model representing the soft tissue to enter these diffused All three methods failed to capture all the inter-bone
inter-bone spaces (Fig. 18(c)). Thus, we are required to spaces in this case. However, region competition was rated
initialize seeds at these very thin spaces using a specialized the best because it best separated the bones on the left.
initialization scheme (see below). An explicit modeling of Discussions with the hand surgeons also suggested that in
the CT blur such as used in (Laidlaw et al., 1998) could these segmentations, SCDM generally localized the bone
also be employed to resolve this issue. contours better. This validation study together with other

We have shown that SCDM does well in capturing the experiments reveals that the main reason for the occasional
bone outlines when seeds were initialized manually. How- failure of SCDM is due to the lack of growth into diffused
ever, initializing multiple seeds in every slice of a 3D inter-bone spaces. These occasional cases require modest
volume is tedious. To alleviate this problem, we have user interaction but can in future be avoided by explicitly
examined the use of a semi-automatic statistical classifica- modeling the partial volume effect in SCDM (Laidlaw et
tion for seed initialization. Fig. 19 shows the results of al., 1998). We plan to do a rigorous validation study of
SCDM for a few representative slices where we have used carpal bone segmentation for SCDM in the future by a
this semi-automatic technique for seed initialization. As- quantitative comparison using standard datasets.
suming that the intensity values of the bones and soft We have reconstructed the 3D surface of carpal bones
tissue come from a mixture of Gaussian distributions, the by stacking the segmentation of 2D slices (Fig. 21). The
EM algorithm (Dempster et al., 1977; Redner and Walker, 2D contours of each carpal bone were extracted and all the
1984) was used to find the component means and vari- contours corresponding to a particular bone were iden-
ances. Then, the seeds for the bones and soft tissue were tified. The 3D triangulated surface model was then created
determined using intensity thresholding. In addition to using the NUAGES software developed by Geiger (1993).
these statistical methods, for narrow inter-bone regions Observe that the bone shape as well as the joint spaces
which defy such characterization, thelogical linear n-line (typically one or two pixels and sometimes less than a
operator (Iverson and Zucker, 1995) was used to initialize pixel) are recovered well. The surfaces are then used for
seeds in the thin inter-bone regions. Since multiple seeds registration of bone motion.
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Fig. 20. Examples of CT image segmentations used in the clinical evaluation. Top to bottom rows: Original image, segmentation using SCDM,
segmentation using seeded region growing, and segmentation using region competition. (a), (b) and (c) show examples of a slice where the hand surgeons
chose the segmentation using SCDM, seeded region growing and region competition, respectively, to be the best.

There are a variety of potential clinical applications for segmentation to compute the ‘average shape’ of each
the use of SCDM in segmenting the carpal bones. SCDM carpal bone and the joint space, and then characterize the
segments the carpal bones and the inter-bone joint spaces deviations from the average as typical or atypical.
accurately so that second order differential measurements From a technical standpoint, we plan to extend this work
such as principal curvatures can be reliably made. This along several directions. First, we currently use the inter-
allows us to investigate the correlation between the shape seed skeleton as the collision boundary to mediate the long
of the bones and joint spaces, and the incidence of disease. range coupling, effectively assuming that regions grow at
Specifically, this segmentation allows for an investigation constant speed. A better and more intuitive way to
of the correlation between shape of the trapezium (the determine the collision point is to use a variable speed
carpal bone at the base of the thumb), the thumb metacar- wave propagation, based on the current speed of regions.
pal and the thumb carpometacarpal joint space and the Second, the computation of the forces is another area of
incidence of osteoarthritis. Using post-mortem potential improvement. The basic idea of the approach is to
stereophotogrammetry measurements of cadaver bones, determine the collision point of two growing seeds,
Van Mow’s group (Xu et al., 1998) have shown that there compare the paths from the boundary of the seeds up to the
exist differences in the curvature maps of male and female predicted collision point, and grow the seeds based on the
trapeziums, and hypothesized that the differences in the suitability of these paths. Currently, we use the end points
shape of the trapezium makes the female population pre- of the paths, i.e., skeletal point and the boundary point, to
disposed to osteoarthritis in the thumb carpometacarpal determine the force. Instead, the forces along the path from
joint. Our segmentations are sufficiently accurate to allow the boundary to the predicted collision point can be
for an in vivo measurement of the curvature maps, as integrated to determine the force. Due to the volumetric
indicated by the rather regular appearance of these second nature of the CT image data and the clinical applications
order measurements (Fig. 22). In addition, the local involving 3D anatomical models, a 3D version of SCDM
curvature differences can be extended to the concept of is necessary for its widespread clinical use. Hence, we plan
general shape differences: we intend to use the SCDM to extend this 2D coupling to 3D, which will enable us to



40 T.B. Sebastian et al. / Medical Image Analysis 7 (2003) 21–45

Fig. 21. The 3D visualization of the segmentations using SCDM that shows the relative placement of bones.

Fig. 22. Some potential clinical applications for the use of SCDM in segmenting the carpal bones. Segmentation of (a) carpal bone trapezium and thumb
metacarpal, (b) carpal bones scaphoid, lunate and capitate. Note that the bone shape as well as the joint spaces (typically one or two pixels and sometimes
less than a pixel) are recovered well. This allows for the investigation of the correlation between bone shape and the occurrence of arthritis (Xu et al.,
1998), which established a distinction in the local curvature map between male and female populations. The robust and accurate subpixel recovery of bone
shapes allows for the computation of the local curvature map of the bone surface. (c) Principal directions (green and red vectors) and normal (blue vectors)
of the carpal bone trapezium computed at points where it contacts other bones. In addition, questions pertaining to the average shape of each carpal bone
and typical and atypical deviations can be addressed in the future based on these representations.
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take advantage of surface continuity in all three directions. SCDM fails to capture some narrow, diffused inter-bone
We plan to build on our experience on 3D level set based spaces. This is due to partial volume effect, and can be
segmentation (Tek and Kimia, 1997) and 3D curvature- tackled by modeling the intensity as a continuous function,
based evolution (Neskovic and Kimia, 1994). However, in taking into account the inherent blurring of CT (Laidlaw et
addition to components already available or generalized to al., 1998).
3D, namely, (i) distance-transform, (ii) ENO, (iii) subvox-
el tracing of the zero level-set, this extension also requires
(i) an efficient computation and representation of skeleton A cknowledgements
in 3D and (ii) a method for coupling two points on the
evolving surface. This technology is now emerging We gratefully acknowledge the support of the Whitaker
(Leymarie and Kimia, 2000, 2001). Foundation, NSF Grant IRI-9700497 and NIH grant

AR44005. We are thankful to Dr. Peter-Arnold Weiss and
Dr. Edward Akelman of Rhode Island Hospital for per-

6 . Conclusion forming the validation tests.

In this paper, we have presented a segmentation method
that combines the advantages of active contour models,
region growing, and the global competition in seeded A ppendix A
region growing as well as the local competition in region
competition. The proposed method (SCDM) uses competi-  Accuracy of recovery of explicit curve representation
tion mediated by the inter-seed skeleton to modulate the from implicit surface representation
growth of seeds. The skeletally mediated competition
allows for long-range competition thus augmenting the The goal of this section is to examine how accurately an
region competition’s local competition (Zhu and Yuille, explicit representation of the curveC(s)5 (x(s), y(s)) can
1996). The subpixel curve evolution based implementation be recovered from an implicit representation of it,f(x,
of SCDM avoids the discretization drawbacks of current y)5 0. Specifically, we focus on functionsf(x, y) derived
implementation of region competition (Zhu and Yuille, as the signed distance transform of a contour, and where
1996). SCDM converges when the net forces at all the recovered contour is modeled as piecewise circular
boundary points are negligible. Thus, SCDM avoids the (PC). We first consider recovery errors for an isolated
convergence problems of curve evolution methods (Mal- straight line, and an isolated circular arc, and then consider
ladi et al., 1994; Caselles et al., 1993; Tek and Kimia, the recovery error for other curves, e.g., parabola.
1995). Also, SCDM is insensitive to the initial placement First, consider an arbitrary isolated line (Fig. 23(a)). The
of the seeds, a drawback of the active contour methods distance transform (DT) restricted to each horizontal or

˜(Kass et al., 1988). However, in carpal bone segmentation, vertical line is linear, i.e.,A A is linear in i by geometrici i

Fig. 23. A profile of the distance transform for an isolated line (a), and circular curve (b), along a horizontal (vertical) grid line to show the effectsof
˜interpolation to recover the boundary. The value at the grid crossingA is the distance of the grid point from the closest point on the curve,A (marked byi i

the black square). The curve (the zero level set of the distance transform) is represented as piecewise circular (PC) curves, using the ENO zero crossings
(marked by crosses).
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Fig. 24. This figure examines the error in computing the zero crossings of the signed distance transform of an isolated circular curve, i.e., the error in
recovering the circular curve. (a) The maximum error for different values of radiusR. The maximum error is,0.12 pixel, forR5 1, which is rather low,
but which is even smaller if the radius is higher or if the average error is considered, as the plot for the caseR5 1 (b) shows.D is the distanceuy 2 y u.y a c

2construction. Then, as the sampled distance transform is in Fig. 23(b)), where (2R, y ,R) and x 5 flooruR 2o o
5 2first order, using second order ENO interpolation along y u. We will express all other points in terms ofx andy ,0 0 0

the horizontal grid line which relies on the values at the i.e.,A 5 (x 2 1, y ), A 5 (x 1 1, y ) and A 5 (x 1 2,1 0 0 3 0 0 4 0
˜grid crossings, namely,hA A j, the line is recovered y ). The function values atA , A , A , A are given byi i 0 1 2 3 4]]]] ]] ]]]]2 2 2 2 2 2exactly. (x 21) 1 y , x 1 y , (x 11) 1 y andœ œ œ0 o 0 o 0 o]]]]Second, consider the recovery of an isolated circular 2 2(x 12) 1 y , respectively. Hence, the interpolating2 2 2 œ 0 ocurve, (x 2 x ) 1 (y 2 y ) 5R , where (x , y ) is thec c c c polynomial for the intervalA A is given by2 3center of the circle andR is the radius (Fig. 23(b)) from its

2signed distance transform sampled on the discrete lattice.f(x)5ax 1bx 1g, (A.1)
To recover the curve from the distance transform, all

wherepoints where the curve intersects the grid lines (marked by
]]]] ]]]]crosses in Fig. 23) need to be computed. To simplify 1 2 2 2 2]a 5 (x 1 2) 1 y 2 (x 1 1) 1 yœ œo 0 o 0calculations, without loss of generality, the origin is shifted 2

to (x , y ). The distance transform, at a horizontal (y 5 y ) ]]1c c o 2 2]1 x 1 y , (A.2)grid crossingsA 5 (x , y ) is the distance of the point œ o 0i i o 2]]2 2˜from the curve is given byA A 5 x 1 y 2R (Fig.œi i i o ]]]] ]]2 2 2 223(b)). Consider now the pointA5 (x , y ), which lies on b 5a(2x 1 1)1 (x 11) 1 y 2 x 1 y , (A.3)œ œe o o o 0 o 0

this horizontal grid line. To computex , an ENO interpola-e ]] ]]]] ]]2 2 2 2 2 2tion along the horizontal grid line is done. If second order g 5 x 1 y 2R2 x ( (x 11) 1 y 2 x 1 y )œ œ œo 0 o o 0 o 0

ENO interpolation is used, three of the four pointsA , A ,1 2 1ax (x 1 1). (A.4)o oA , A are selected for interpolating the intervalA A . In3 4 2 3

addition toA and A , either A or A (depending on the The zero crossings of the distance transform along the2 3 1 4

point that gives the lower curvature) is used for the second horizontal gridline,x , is computed by solving the zeros ofe

order ENO interpolation. Note that in the case of an Eq. (A.1), and choosing the one that lies in the valid range.
isolated circle, the point away from the center (A in Fig. Thus, we have computed the zero crossing of the distance4

23(b)) is always chosen for second order ENO interpola- transform, i.e., the point (x , y ). The actual zero crossing,e o

tion. Let (x , y ) denote the coordinates of the grid point (x , y ), can be computed analytically by simultaneously0 0 a a

interior to the circle and adjacent to the zero crossing, (A solving for the equation of the circle and the horizontal2

line. Fig. 24(a) shows the maximum error in computing the
5 zero crossings i.e., in recovering the curve from theTo find the polynomial approximation between the grid locationsxj

distance transform, for different values ofR, and Fig. 24(b)andx , we start by computing a first order polynomial using the valuesj11

f(x ) and f(x ). A second order polynomial is constructed by adding shows the error forR5 1 which even in the worst case isj j11

eitherx or x , whichever produces a smoother polynomial, i.e., lowerj21 j12 acceptable. We now consider the reconstruction accuracy
curvature. Specifically ifx is chosen, andC 5 f [x , x ] and C 5j12 1 j j11 2 of some simple shapes, from the distance transform. Fig.
f [x , x , x ] are the first and second Newton divided differences,j j11 j12 25 shows the error in recovering the curve from the exactsecond order ENO interpolation for the intervalx , x is computed asj j11

2 distance transform of a parabola and two circles. If the twoC x 1 (C (x 1 x )1C )x 1 f(x )2 (C x 1C x x ). Further details2 2 j j11 1 j 1 j 2 j11 j

on computing ENO interpolation can be found in (Siddiqi et al., 1997). circles are taken to be representative of two seeds whose
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2Fig. 25. This figure shows the accuracy in recovering some simple curves from their exact signed distance transform. For the parabolay 5 (x 2 26) 1 3.2
(a), the maximum error is 0.01 pixel. The two circles, within the same pixel (b) are recovered with a maximum error of 0.005 pixel. A zoomed version of
(b) is shown in (c). Bilinear interpolation fails to recover these circular curves (d). This shows that these subpixel methods are essential in implementing the
SCDM method.

Fig. 26. This figure shows the error in recovery of the zero levelset from the computed distance transform for the shape on the left. The plot on the right
shows the absolute error for each zero crossing, all of which are lower than 0.035, a rather acceptable error margin.

growth has made it adjacent, the need for such subpixel is to select the data points which give lower variation
methods in implementing SCDM becomes evident. Fig. 26 among two contiguous sets of data points. This means that
shows the error in recovering the curve from the computed in intervals neighboring a discontinuity, interpolation is
distance transform using wave propagation for a simple done from the side not containing the discontinuity.
shape. This error is typical and in line with the above The basic 1D ENO interpolation begins with a first

f,1analysis, thus rendering the process suitable for imple- degree polynomialP (x) interpolating the functionf(x)j11 / 2

menting SCDM. between the two grid pointsx and x . If we stop here,j j11

we obtain the first-order monotone approximation. When-
ever a higher order is desired, we add just one point to the
existing stencil, chosen from the two immediate neighbors

Appendix B by the sizes of the two relevant divided differences, which
measure the local smoothness of the functionf(x). Given

 ENO interpolation algorithm point values f(x ), j 5 0, 61, 62, . . . of a (usuallyj

piecewise smooth) functionf(x) at discrete nodesx , wej
f,rThis section gives a brief overview of the ENO interpo- associate anrth degree polynomialP (x) with eachj11 / 2

lation algorithm discussed in (Siddiqi et al., 1997). Tradi- interval [x , x ], with the left-most point in the stencil asj j11

tional spline or polynomial interpolation techniques tend to x , constructed inductively as described in Table 2. Note(r)kmin

smooth over discontinuities by propagating information that the ENO interpolation of a 2D function (2D image or
across them. ENO interpolation has been proposed toembedding surface) is done along the horizontal and
address this problem. The basic idea of ENO interpolation vertical gridlines.
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Table 2
This table adapted from (Siddiqi et al., 1997) sketches the ENO interpolation algorithm. In the proceduref [ ? ,? ? ? ,? ] are the standard Newton divided
differences,f [x , x ,? ? ? ,x ] 5 f [x ,? ? ? ,x ] 2 f [x ,? ? ? ,x ] /x 2 x with f [x ] 5 f(x )1 2 k11 2 k11 1 k k11 1 1 1
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